A novel Adaptive weighted Kronecker Compressive Sensing

نویسندگان

  • Seyed Hamid Safavi
  • Farah Torkamani-Azar
چکیده

Recently, multidimensional signal reconstruction using a low number of measurements is of great interest. Therefore, an effective sampling scheme which should acquire the most information of signal using a low number of measurements is required. In this paper, we study a novel cube-based method for sampling and reconstruction of multidimensional signals. First, inspired by the block-based compressive sensing (BCS), we divide a group of pictures (GoP) in a video sequence into cubes. By this way, we can easily store the measurement matrix and also easily can generate the sparsifying basis. The reconstruction process also can be done in parallel. Second, along with the Kronecker structure of the sampling matrix, we design a weight matrix based on the human visuality system, i.e. perceptually. We will also benefit from different weighted l1-minimization methods for reconstruction. Furthermore, conventional methods for BCS consider an equal number of samples for all blocks. However, the sparsity order of blocks in natural images could be different and, therefore, a various number of samples could be required for their reconstruction. Motivated by this point, we will adaptively allocate the samples for each cube in a video sequence. Our aim is to show that our simple linear sampling approach can be competitive with the other state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The research of Kronecker product-based measurement matrix of compressive sensing

The theory of compressive sensing is briefly introduced, and some construction methods for measurement matrix are deduced. A measurement matrix based on Kronecker product is devised, and it has been proved in mathematical proof. Numerical simulations on 2-D image verify that the proposed measurement matrix has better performance in storage space, construction time, and image reconstruction effe...

متن کامل

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Compressive SAR Imaging with Joint Sparsity and Local Similarity Exploitation

Compressive sensing-based synthetic aperture radar (SAR) imaging has shown its superior capability in high-resolution image formation. However, most of those works focus on the scenes that can be sparsely represented in fixed spaces. When dealing with complicated scenes, these fixed spaces lack adaptivity in characterizing varied image contents. To solve this problem, a new compressive sensing-...

متن کامل

Subband Adaptive Filter Exploiting Sparsity of System

This paper presents a normalized subband adaptive filtering (NSAF) algorithm to cope with the sparsity condition of an underlying system in the context of compressive sensing. By regularizing a weighted l1-norm of the filter taps estimate onto the cost function of the NSAF and utilizing a subgradient analysis, the update recursion of the l1-norm constraint NSAF is derived. Considering two disti...

متن کامل

Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks

Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a nov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.01113  شماره 

صفحات  -

تاریخ انتشار 2016